
Image Compression Using K-Means Clustering
Muhammad Luqman Hakim (13523044)

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13523044@std.stei.itb.ac.id muhluqhakim@gmail.com

Abstract—Image compression is an essential process in reduc-
ing the storage or transmission costs of digital images. This study
explores the application of K-Means Clustering for lossy image
compression. By partitioning the image’s pixel data into clusters
and replacing each pixel values with their corresponding cluster
centroids, the image’s size may be reduced without substantial
degradation in quality.

Index Terms—image compression, k-means clustering

I. INTRODUCTION

Image compression techniques aim to reduce the amount
of data required to represent an image, making it easier to
store, transmit and process without significantly compromising
visual quality. This study investigates the application of k-
means clustering for introducing lossy image compression to
further reduce the storage cost of images stored in the PNG
file format.

K-means clustering works by partitioning image pixel val-
ues, represented as vectors, into clusters, each represented by
a centroid, such that the sum of the euclidean distance of every
vectors to its respective centroid is minimized. By replacing
pixel values with their corresponding cluster centroids, the
resulting image can be represented with less color value, which
is more easily compressed by the compression algorithm used
in encoding PNG files. This effectively reduces the image size
while maintaining a reasonable approximate representation of
the original content.

The remainder of this paper explores the implementation of
K-Means for image compression and evaluates its performance
in terms of compression ratio and image quality. By analyzing
the compression ratio and image quality produced by this
method, this research provides a comprehensive analysis of K-
Means Clustering as a modern solution for image compression.

II. REAL-VALUED VECTORS

A real-valued vector is a fundamental mathematical entity
used to represent quantities in a space where each dimension is
associated with a real number. Mathematically, a real-valued
vector is defined as an ordered tuple of real numbers. For
example, in a two-dimensional space, a vector v can be written
as v = (v1, v2), where v1 and v2 are real numbers representing
the vector’s position along the x-axis and y-axis, respectively.

In general, a vector in n-dimensional real-valued space
(denoted Rn) is expressed as:

v = (v1, v2, . . . , vn),

where n is the number of dimensions, and each component
vi is a real number. These components may include any value
from the set of real numbers, including integers, fractions, and
irrational numbers.

Geometrically, a real-valued vector can be visualized as
a directed line segment originating from a reference point,
typically the origin of the coordinate system. The vector’s
components (v1, v2, . . . , vn) determine its position in the
space. In R2, the vector v = (v1, v2) corresponds to a point
in a two-dimensional plane. In R3, v = (v1, v2, v3) represents
a point or direction in three-dimensional space. In higher
dimensions (n > 3), the vector exists in abstract spaces that are
challenging to visualize but are mathematically well-defined.

While vectors are often visualized geometrically, their ap-
plication extends to representing non-geometric data, such as
pixel values in images. In the context of this study, vectors are
used to encode the RGB color values of pixels, where each
pixel is represented as a three-dimensional vector correspond-
ing to its red, green, and blue intensity levels. This abstraction
allows us to treat image data as points in a multi-dimensional
color space, enabling mathematical operations like clustering
to be applied effectively. By grouping similar pixel vectors
using the k-means algorithm, we reduce the number of unique
colors, thereby compressing the image while preserving its
visual quality. This approach demonstrates the flexibility of
vectors as tools for representing and processing diverse forms
of data, beyond their traditional geometric interpretations, and
highlights their critical role in the compression algorithm
presented in this paper.

III. EUCLIDEAN DISTANCE

The Euclidean distance is a fundamental concept in geom-
etry and is widely used across various fields such as data
analysis, machine learning, and image processing. It measures
the straight-line distance between two points in Euclidean
space and is equivalent to the length of the line segment
connecting these points. This metric provides a natural and
intuitive way to quantify the similarity or difference between
two points in a given space.

In a general n-dimensional real vector space, the Euclidean
distance between two points a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) is defined as:

d(a,b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2,
(1)

which can also be expressed in vector notation as:

d(a,b) = ∥a− b∥ =
√
(a− b) · (a− b), (2)

where ∥·∥ represents the vector norm, and · denotes the dot
product of two vectors.

A. Geometric Interpretation

The Euclidean distance can be interpreted geometrically as
the hypotenuse of a right triangle formed by the differences
between the corresponding coordinates of a and b. In a
two-dimensional space, this corresponds to the Pythagorean
theorem:

d(a,b) =
√

∆x2 +∆y2,

where ∆x and ∆y are the horizontal and vertical distances
between the two points.

In higher dimensions, the Euclidean distance generalizes
this concept by incorporating all coordinate differences, ef-
fectively extending the Pythagorean theorem to n-dimensional
space.

B. Applications in Image Compression

In the context of this study, the Euclidean distance plays a
crucial role in clustering algorithms such as K-Means. When
applied to image compression, the distance is used to measure
the similarity between pixel values, represented as vectors
in a three-dimensional RGB color space. Specifically, the
distance between two pixel vectors p1 = (r1, g1, b1) and
p2 = (r2, g2, b2) is calculated as:

d(p1,p2) =
√
(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2.

This distance metric enables the algorithm to group similar
colors into clusters, with each cluster represented by its cen-
troid. By minimizing the Euclidean distances within clusters,
the algorithm ensures that the compressed image retains visual
fidelity while reducing the number of unique colors.

IV. K-MEANS CLUSTERING

Given a set of vectors and a constant k, k-means clustering
aims to partition the set into k cluster, each associated with a
centroid vector, such that the sum of squared Euclidean dis-
tance of each vector with its respective centroid is minimized.

This leads to the partitioning of the data space into Voronoi
cells. K-means clustering minimizes the within-cluster vari-
ances (squared Euclidean distances), rather than the regular
Euclidean distances, which would correspond to the more
complex Weber problem. While the mean minimizes squared
errors, the geometric median is the one that minimizes Eu-
clidean distances. For example, more optimal Euclidean so-
lutions can be achieved using techniques like k-medians and
k-medoids.

Although this problem is NP-hard, efficient heuristic algo-
rithms can rapidly converge to a local optimum, resulting in
acceptable approximate solution. For the sake of simplicity, in
this paper, Llyod’s algorithm is implemented, as it is the most
common algorithm used for k-means clustering.

A. Algorithm

Lloyd’s algorithm is one of the most common and widely
used algorithms for implementing K-means clustering. It pro-
ceeds with the following steps: first, it selects k random points
from the dataset as initial centroids. There are two commonly
used techniques in choosing the initial Forgy and random
partition techniques. The Forgy method randomly selects k
data from the dataset to be the initial centroids, which tends
to result in centroids that are spread out across the data. In con-
trast, the random partition method first randomly assigns each
data point to a cluster and then calculates the centroid of each
cluster based on its randomly assigned points. This typically
results in centroids that are closer to the center of the data.
In the subsequent iterations, the algorithm alternates between
two main steps: assignment and update. In the assignment step,
each data point is assigned to the cluster corresponding to the
closest centroid, with the distance measured by the squared
Euclidean distance. In the update step, the centroid of each
cluster is recalculated as the mean of all the points assigned
to that cluster. This process repeats until the assignment of
points to clusters no longer changes, indicating convergence.

The algorithm initially chooses k random points to be the
centroids associated with each cluster. Then the algorithm
alternates between assigning each data points based on the
centroid it is closest to and recalculating each centroids as
the mean over its assigned data points. These two steps are
repeated until no data point is assigned to a different cluster.

Algorithm 1: Lloyd’s Algorithm
Data: k = number of clusters

V = {v1 . . .vN} set of N vectors
Result: S1 . . . Sk, where Si is the set of vectors in

cluster k
c1 . . . ck ← randomly chosen centroids;
repeat

/* assign cluster to each vector */
for i ← 1 to k do

Si ← {v ∈ V | ci ∈ argmin
c∈{c1..ck}

d (v, c)
2};

/* Though some v may be assigned
to multiple sets, it must be
assigned to exactly one of
them. Typically, the set with
the lowest index is chosen.

*/
end
/* recalculate centroids */
for i ← 1 to k do

ci ← 1
|Si|

∑
v∈Si

v;
end

until converge;

It is evident that after each iteration, the sum of distance
squared within each cluster decreases monotonically. There-

fore this algorithm is guaranteed to always converge to a local
optimum, but not necessarily the global one.

V. COMPRESSION ALGORITHM IN PNG FILE FORMAT

A. Overview

The Portable Network Graphics (PNG) file format em-
ploys a lossless compression algorithm to efficiently store
and transmit image data while preserving its original quality.
The compression process in PNG involves a combination of
filtering, run-length encoding and the DEFLATE algorithm.

B. Image Filtering

Before the DEFLATE algorithm is applied, the image
data undergoes a transformation using a prediction method.
Specifically, a filter method is selected for the entire image,
while each image line is processed using a dynamically chosen
filter type. This transformation prepares the data to be more
efficiently compressed. The selected filter type for a scanline is
prepended to the line itself, allowing for inline decompression
during decoding.

The current PNG specification defines only one filter
method (method 0), meaning the primary decision involves
selecting the appropriate filter type for each line. This method
operates by predicting the value of each pixel based on the
values of neighboring pixels and then subtracting the predicted
value from the actual pixel value. Lines filtered in this way are
typically more compressible than raw image data, especially
when the current line closely resembles the one above it. This
is because the differences between predicted and actual values
tend to cluster near zero, making the data easier to compress.
This process is particularly important for relating separate rows
within the image since the DEFLATE algorithm treats the
image as a linear stream of bytes without recognizing its two-
dimensional structure.

Filter method 0 provides five types of filters, each predicting
the value of a byte (from the pre-filtered image data) using one
or more neighboring bytes: the byte to the left (A), the byte
above (B), the byte above and to the left (C), or combinations
of these. The filters encode the difference between the actual
and predicted values. The filters are applied to byte values,
not to entire pixels. Pixel values may span one or more bytes
or consist of multiple components per byte but are always
processed within byte boundaries. The five filter types are
listed at Table I.

Type Byte Filter Name Predicted Value

0 None Zero (raw byte value passes
through unaltered)

1 Sub Byte A (to the left)
2 Up Byte B (above)

3 Average Mean of bytes A and B,
rounded down

4 Paeth A, B, or C, whichever is clos-
est to p = A+B − C

TABLE I
PNG FILTER TYPES AND THEIR PREDICTED VALUES

The filter type is selected dynamically for each row to
minimize the size of the encoded data.

C. Data Compression Using DEFLATE

The filtered image data is compressed using the DEFLATE
algorithm, a lossless compression method that combines two
techniques:

1) LZ77 Compression: Exploits repeated sequences in the
data by replacing duplicate strings with references to
earlier occurrences, significantly reducing redundancy.

2) Huffman Coding: Encodes data using variable-length
codes, assigning shorter codes to more frequently occur-
ring sequences and longer codes to less frequent ones.

This dual-stage approach ensures both high compression effi-
ciency and adaptability to a wide range of image content.

VI. IMPLEMENTATION OF K-MEANS CLUSTERING FOR
PNG IMAGE COMPRESSION

The implementation of K-Means clustering for PNG image
compression involves several key steps, from preprocessing
the image data to applying the clustering algorithm and
reconstructing the compressed image. Below is an outline of
the process:

1) Preprocessing the Image: The PNG image is read and
reshaped into an array of vectors where each vector
represents a pixel. This allows the pixel data to be treated
as a dataset for clustering.

2) Applying the K-Means Algorithm: the K-Means algo-
rithm is applied to compress the image by partitioning its
pixels intok clusters, where k is a user-defined parameter
determining the number of unique colors in the com-
pressed image. Initially, cluster centroids are randomly
selected. The algorithm iteratively assigns each pixel
to the nearest centroid, based on Euclidean distance
and updates the centroids to the mean of their assigned
pixels. Using Lloyd’s algorithm, this process continues
until the centroids stabilize or a maximum number of
iterations is reached. To avoid excessive computation
time, the number of iterations is limited at a predefined
limit

3) Quantization: Once clustering is complete, each pixel in
the image is replaced with the centroid of the cluster
to which it belongs. This step reduces the number of
unique colors in the image to k, achieving the desired
simplification.

4) Reconstruction of the Image: The resulting image is
reconstructed using the quantized pixel values. The
image is then saved in the PNG format, which applies
its own filtering and DEFLATE compression to further
reduce the file size.

Clustering the pixels of the image reduce the number of
colors into k, color. This creates more redundancy which can
be exploited by the preprocessing and compression algorithm
used in PNG. This approach demonstrates how k-means
clustering can enhance the efficiency of PNG compression

while maintaining high visual fidelity, making it suitable for
applications requiring both quality and compact storage.

VII. PROGRAM DESIGN AND IMPLEMENTATION

A. Language and Libraries Choice

The program is implemented in C, utilizing the stb libraries
for image processing and file handling. These lightweight,
single-header libraries simplify loading and saving images
in various formats, including PNG, ensuring seamless in-
tegration with the compression algorithm. Additionally, the
implementation leverages the OpenMP (OMP) library to en-
able parallel processing, significantly improving computational
performance by distributing tasks across multiple threads. This
combination of tools ensures a portable, fast and reliable
implementation of the K-Means clustering-based image com-
pression method.

B. Data Structures

In the stb_image library, the pixel data of an image is
stored in a simple, contiguous array of unsigned char-s.
The array consist of rows of pixel with the first pixel in the
array is the top-left-most pixel in the image, with each pixel
represented by multiple bytes depending on the color channels.
For PNG file format, each pixels are represented by 3 bytes:1
byte for the red, 1 byte for the green, and 1 byte for the blue
value, consecutively.

This representation, however, is difficult to do the required
computations with. Therefore another data structure is used
for computing k-means method.

At the preprocessing stage of the image, the pixels are each
represented as a C struct:

typedef struct _pixel {
double R;
double G;
double B;

} pixel;

All the pixels of the image are then stored as an array of
pixel-s.

The association between a pixel and the cluster it belongs
to is stored in an array of int such that the i-th element of the
array is the cluster to which the i-th pixel belongs. This is done
to minimize the memory waste due to memory alignment, as
opposed to storing the cluster index inside the pixel struct.

C. Data Flow and Context Diagram

The data flow for the program begins with the input image,
which is passed to the compress_image program, option-
ally along with the number of clusters k. This image is first
processed by the stbi_load function from the stb_image
library, which reads the file and converts it into a raw byte
array, where each pixel is represented by its color channels
(e.g., RGB). The byte array is then transformed into a vector
representation, treating each pixel as a three dimensional
vector based on its color channels. This vectorized data is

passed to the k-means clustering algorithm, which groups the
pixels into k clusters based on their similarity, represented by
the proximity of their colors in the vector space. The algorithm
replaces each pixel’s values with the centroid of its cluster.
The clustered data is then converted back into a raw byte
array. Finally, the stbi_write_png function encodes the
modified byte array into a compressed PNG file, generating the
output image with reduced size while maintaining acceptable
visual quality.

Fig. 1. Context Diagram.

Fig. 2. Data Flow Diagram.

D. Implementation

The full implementation can be accessed at the link provided
in Appendix A.

VIII. TESTING AND RESULTS

A. Program Usage

The program is executed by running the executable file from
terminal and giving it 2 (or 3) parameters. The fisrt parameter
is the image that is to be compressed. The second parameter
is the name for the resulting compressed image. The last,
optional, parameter is the number of clusters (and therefor
colors) that is used for the k-means algorithm. If this parameter
is not included, the program defaults to 256 clusters/colors.

B. Description of the Samples

Fig. 3. and Fig. 4. are some samples of images that
went through the compression.These images have been pro-
cessed to reduce the number of distinct colors, representing
a compressed version of the original images. Sample 1 is a
digital illustration and sample 2 is a photograph. The digital
illustration, with its simplified shapes, solid colors, and clear
boundaries, provides a controlled environment to test how well
the algorithm handles images with limited color diversity and
sharp contrasts. The photograph, on the other hand, presents a

Fig. 3. Sample image 1. From top-right, clockwise, sample image compressed
(k=10), sample image compressed (k=50), sample image compressed (k=250),
sample image original

Fig. 4. Sample image 2. From top-right, clockwise, sample image compressed
(k=10), sample image compressed (k=50), sample image compressed (k=250),
sample image original

more complex scenario, featuring subtle color gradients, tex-
tures, and intricate details. Using both types of images allows
for a comprehensive evaluation of the algorithm’s performance
across different image styles, assessing its ability to compress
images effectively while maintaining visual quality.

C. Image Quality

When applying K-means clustering for image compression,
the number of clusters k plays a critical role in determining
the quality and compression ratio of the resulting image. At
k = 10, the image undergoes significant compression, as
only 10 distinct colors (centroids) are retained. This level of
compression drastically reduces the image size, but it also
leads to a loss of color detail. In the first sample, The girl’s
in the image appears colorless. this is due to the fact that
there is not enough colors to properly represent the girl’s
appearance. In the second example, the man’s skin color and
overall appearance also seems less saturated. Additionally, the
man’s skin has apparent ”layers” of colors, due to the fact
that there is not enough colors to express the gradient in
the image. With large areas of similar colors. Fine details
and subtle color variations in the image are smoothed out,
and the image looks simplified, less saturated, and ”layered”.
While the compression ratio is high, the loss in quality may be
noticeable, especially for images that contain intricate details
or gradients.

At k = 50, the number of colors retained increases, leading
to better color representation in the compressed image. The
image still exhibit some compression artifacts, but the overall
appearance is better compared to the k = 10 case. More
color variations are preserved, and finer details of the image
are more visible. The same issue is still noticable, with
colors clustering in areas with subtle gradients, but the image
will appear significantly closer to the original version, with
recognizable features and textures. The compression ratio is
still reasonable, but the image quality is noticeably better than
at k = 10.

At k = 250, the compression is much lighter, and 250
distinct colors are used to represent the image. This level
of compression retains more fine details and color nuances,
producing an image that closely resembles the original. Sample
2, which is photograph, has some visible compression artifact
, whereas in sample 1, the compression artifact is unnoticable.
Overall, the image is much more faithful to the original color
distribution. The image appears sharper, with smoother transi-
tions and fewer areas of uniform color. While the compression
ratio is lower compared to k = 10 and k = 50, the quality of
the image is much higher. This is ideal for applications where
high fidelity is necessary, and the file size is less of a concern.

Both figures provide insight into the trade-off between
compression ratio and image quality. As the number of clusters
decreases, the compression ratio improves, but the image may
lose some of its original visual fidelity. By experimenting with
different values of k, it is possible to strike a balance between
compression efficiency and maintaining a perceptible image
quality. These visual comparisons are critical in understanding

the practical implications of using k-means clustering for
image compression.

D. Compression Ratio

k
Compression Ratio

Sample 1 Sample 2
k = 10 4.99 5.08
k = 50 2.27 2.40
k = 250 1.04 1.15

TABLE II
PNG FILTER TYPES AND THEIR PREDICTED VALUES

The compression ratios shown in the table correspond to
the performance of the K-means image compression algorithm
applied to two different samples, with varying values of k. The
compression ratio is the ratio of the original image size to the
compressed image size, with higher values indicating greater
compression (i.e., smaller file sizes). The table presents the
compression ratios for both samples at three different values
of k: 10, 50, and 250.

At k = 10, both Sample 1 and Sample 2 exhibit relatively
high compression ratios of 4.99 and 5.08, respectively. This
indicates that the images are highly compressed, with only
10 distinct colors retained. As a result, the file sizes are
significantly reduced, but the image quality suffer due to the
substantial reduction in color detail. The high compression
ratios suggest that the algorithm has compressed the images
effectively at this value of k.

When k = 50, the compression ratios decrease to 2.27 for
Sample 1 and 2.40 for Sample 2. This means the images are
less compressed compared to the k = 10 case, as more color
details are retained, resulting in larger file sizes. Although the
images are still compressed relative to their original size, the
decrease in compression ratio indicates that less aggressive
compression is applied, leading to improved image quality.

At k = 250, the compression ratios are further reduced to
1.04 for Sample 1 and 1.15 for Sample 2. This suggests that
the images are much less compressed compared to the lower
values of k, as 250 colors are used to represent each image.
The file sizes are closer to the original size, but the image
quality is significantly improved with minimal loss of detail.
The lower compression ratios indicate that the compression
is much less aggressive at this level of k, resulting in higher
quality images with a trade-off of reduced compression.

IX. CONCLUSION

In this paper, the K-means clustering algorithm has been
explored as an effective method for image compression.
Through the application of the algorithm on two distinct
types of images—a digital illustration and a photograph—we
demonstrated the impact of different values of k on the
compression ratio and image quality. The experimental results
show a clear trade-off between compression efficiency and
image quality. As the value of k increases, the number of
colors retained in the image also increases, which leads to

a decrease in the compression ratio but an improvement in
image quality.

At lower values of k, such as 10, the images are highly com-
pressed, leading to significant reductions in file size but with
visible degradation in quality. As k increases, the compression
becomes less aggressive, and the images maintain more of
their original details, offering a better visual appearance. These
results highlight the importance of choosing an optimal value
for k based on the desired balance between file size and image
fidelity.

Overall, K-means clustering provides a straightforward and
efficient approach to image compression, with performance
that can be fine-tuned by adjusting the number of clusters.
However, future work could explore alternative clustering
methods or hybrid approaches to further improve compression
ratios while maintaining high image quality.

X. ACKNOWLEDGMENT

I would like to express my sincere gratitude to God
Almighty for His guidance, who made the completion of this
paper possible. I would also like to thank Dr. Ir. Rinaldi
Munir, M.T., for his invaluable guidance and support during
the IF2123 Aljabar Linier dan Geometri course. Additionally,
the completion of this paper has been greatly supported by
my dear family and friends, fellow students from the Teknik
Informatika and Sistem dan Teknologi Informasi departments
at ITB, Class of 2023.

REFERENCES

[1] S. Lloyd, ”Least squares quantization in PCM,” in IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129-137, March 1982, doi:
10.1109/TIT.1982.1056489.

[2] J. Pelleg, D. & Moore, A. (1999). ”Accelerating exact k -means
algorithms with geometric reasoning”. Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data
mining. San Diego, California, United States: ACM Press. pp. 277–281.
doi:10.1145/312129.312248. ISBN 9781581131437. S2CID 13907420.

[3] Hartigan, J. A. & Wong, M. A. (1979). Algorithm AS 136: A K-
Means Clustering Algorithm. Applied Statistics, 28, 100–108. doi:
10.2307/2346830.

[4] Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming,
J. (2022). K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data. Information
Sciences, 622, 178–210. doi: 10.1016/j.ins.2022.11.139.

[5] Anton, H., & Kaul, A. (2019). Elementary linear algebra. John Wiley
& Sons.

APPENDIX A

COMPLETE IMPLEMENTATION OF THE COMPRESSION
PROGRAM

The complete implementation of the program can be ac-
cessed at https://github.com/carasiae/compress image

APPENDIX B

SOURCES OF SAMPLE IMAGES

1) Sample 1: A scene from a fictional visual
novel starring Wikipe-tan, via Wikimedia.
https://commons.wikimedia.org/wiki/File:Wikipe-
tan visual novel (Ren%27Py).png. Licensed under

https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/312129.312248
https://doi.org/10.2307/2346830
https://doi.org/10.1016/j.ins.2022.11.139
https://github.com/carasiae/compress_image
https://commons.wikimedia.org/wiki/File:Wikipe-tan_visual_novel_(Ren%27Py).png
https://commons.wikimedia.org/wiki/File:Wikipe-tan_visual_novel_(Ren%27Py).png

the Creative Commons Attribution-Share Alike 3.0
Unported license.

2) Sample 2: MrBeast frontface 2021, via Wikimedia.
https://commons.wikimedia.org/wiki/File:MrBeast frontface 2021.png.
Originally uploaded on YouTube under a CC license.

STATEMENT

I hereby declare that the paper I wrote is my own writing,
not an adaptation, or translation of someone else’s paper, and

not plagiarized.

Bandung, 2 January 2025

Muhammad Luqman Hakim

https://commons.wikimedia.org/wiki/File:MrBeast_frontface_2021.png

	Introduction
	Real-Valued Vectors
	Euclidean Distance
	Geometric Interpretation
	Applications in Image Compression

	K-Means Clustering
	Algorithm

	Compression Algorithm in PNG File Format
	Overview
	Image Filtering
	Data Compression Using DEFLATE

	Implementation of K-Means Clustering for PNG Image Compression
	Program Design and Implementation
	Language and Libraries Choice
	Data Structures
	Data Flow and Context Diagram
	Implementation

	Testing and Results
	Program Usage
	Description of the Samples
	Image Quality
	Compression Ratio

	Conclusion
	Acknowledgment
	References

